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We characterize the K-functionals for certain pairs of univariate function
spaces including (C, W\), (Lp,B~(Lp»), O<q,p~oo and (Lp, Bi,(L,»), where
O<p, 0« 00, and;(:= (0(+ l/p)-l. © 1991 Academic Press, Inc.

1. INTRODUCTION

The K-functional was introduced by J. Peetre as a means of generating
interpolation spaces. If Xo, Xl is a pair of quasi-normed spaces which are
continuously embedded in a Hausdorff space X, then their K-functional,
defined for allfEXo+X1 , is

K(f,t):=K(f,t,XO'X1 ):= inf (1Ifollxo+tllflI1xJ (1.1)
f~fo+fl

In some cases, the K-functional is defined by using a semi-norm for Xl; we
always make clear when this K-functional is intended.

If T is a linear operator which is bounded on Xoand Xl' then it is easy
to see that

(1.2)

with M depending only on the norms of T on X o and XI' The space
(X, Y)o,q, 0 < e< 1, 0 < q ~ 00, is the collection of functions f E X o+ Xl

such that

"= {( tOO [t- OK(f, t)]q ~tYlq,
IfI(Xo, Xllo,q "

sup t-oK(f, t),
t ;?-o

O<q< 00,

q = (Xl.

(1.3 )

* Supported by the NSF under Grant DMS 8620108.
t Supported by the Science Fund of the Chinese Academy of Science.

38
0021-9045/91 $3.00
Copyright © 1991. by Academic Press, Inc.
An rights of reproduction in any form reserved.



K-FL'\ICTIO'\lALS FOR RESaY SPACES 39

It follows from (1.2) that (Xu, X do." is an interpolation space for the
pair (Xo, Xl); i.e., every linear operator which is bounded on Xo and XI is
bounded on (Xo, Xl )0.". This method of generating interpolation spaces is
called the real method of interpolation.

One of the main problems in interpolation theory is to describe the
spaces (Xu, XI )0.'1 for pairs of classical spaces. While this can sometimes be
managed without an explict characterization of the K-functional for the
pair, the K-functional provides finer information about interpolation and
perhaps more importantly often points to classical quantities which are at
the heart of understanding this pair of spaces. For example, the K-func
tionals for pairs of L p spaces can be described in terms of rearrangements
(see [1 J), those for Sobolev spaces in terms of rearrangements of
derivatives [7J, and so on.

As another example of the characterization of K-functionals which is
closely related to the subject of this paper, we consider interpolation for the
pair Lp(I), W;(I), where 1= [0, 1] and W;, is the Sobolev space consisting
of all functions IE Lp(1) which have (r --- I) absolutely continuous
derivatives and rth derivativespr l E Lp(I). The Soholev space has the semi

norm IIi W~(I) := Ilpr)11 Lp(l) and norm III w~(I) := Idil Lp(l) + III W;,(I)' In this
case, using the semi-norm in the definition of (1.1 ) we have for 1~ p ~x,
r= 1,2, ...

where W r is the rth order modulus of smoothness of IE L p :

wr(f, t)p=(JJAj; t, 1)1':= sup 11L1;,U ')'IL/,(I,,,I'
Ihl" I

(1.4 )

(1.5 )

Here L1;, is the rth order difference with step hand I rh = {x : x, x + rh E I}.
It follows from the characterization (1.4) that

(1.6 )

with B~(Lp) the Besov spaces which are defined for 0 < ex < rand
0< p, q ~ x; as the set of all functions IE Lp(I) for which

O<q<x,
(1.7)

q= x

is finite. We define the following "norm" for B~(Lp(I)):

IPI 8;(1,0(1)) := ilIl1 LI'(I) + Ifi 8;(lp(/))'



40 DEVORE Al\;D YU

Once the K-functional K(j; t) for a pair (Xo, Xd is known, we can
calculate the K-functional for the pair (Yo, Y1) for Yi := X". qi' i = 0, 1,
from Holmstedt's formula (see [1, p. 307])

where;. :=!X,-:Xo'
For example, if l~p~u::" then (1.4), (1.6), and (1.8) give the K-fune

tional for (Lp, B~(Lp)) and show that (Lp, B~(Lp))e.s = B~'(Lp) provided
1~ p ~ oc. The same characterizations hold for p < 1 but must be proved
by different techniques (see Section 3) since thc Sobolev spaces arc not
defined for p < 1.

Interpolation for the pairs (Lp , B~(L.)), where r -=I- p, is more difficult.
Little is known about the precise form of the interpolation spaces except
for the spacial case q=(:x+ I/p)-I. We denote the resulting space by
B;:(p, + I)' Then, DeVore and Popov [5] have shown that for O<p< oc,

(1.9)

The same result for Besov spaces defined by Fourier transforms (they
correspond to smoothness in H p) was proved earlier by Peetre [8]. There
have been many important applications of (1.9) to various areas of analysis
especially nonlinear approximation (see, for example, [5]).

The purpose of the present paper is to shed some light on the nature of
the interpolation for Sobolev and Besov spaces by characterizing the
K-functional for certain pairs of these spaces. In Section 2, we characterize
the K-functional for (C, W:) by using a modified variation of f This
K-functional has important application in approximation by free knot
splines. In Section 3, we characterize the K-functional for the pair
(Lp, B;(Lp)) when 0 < p ~ 1. Thc characterization is the same as that for
p~1.

Our main results, in Section 5, characterize the K-functional for the pair
(Lp , B;;(p!X+ ,)). For this, we return to the work of Brudnyi [3] and Bergh
and Peetre [2] of the 1970s on nonlinear approximation. They charac
terized the approximation spaces for L p approximation by sp'lines with free
knots as interpolation spaces for the pair (L p , Va• p ). Here, Va• p , O<a<p,
is the collection of functions f E L p for which the "variation"

( 1.10)
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is finite. Here r - 1 is the greatest integer in 1/0" - lip and the sup is taken
over all partitions 1= U Ii'

The results of Brudnyi and Bergh and Peetre were in some sense sup
planted by the work of Petrushev [9J and DeVore and Popov [5], who
gave similar characterizations for the approximation spaces in terms of the
more familiar Besov spaces. However, as we shall see in the present paper,
the V,,-,p spaces and the concept of 0" variation are useful for characterizing
K-functionals. For example, in Section 4 we characterize K(j, t, L p, V,,-,p),
0< p :( 00, in terms of local variation and this in turn gives a characteriza
tion of the K-functional K(j, t, L p , Ba

). We should mention that, when
p = 00, the K-functional for (C, V,,-, co) was already computed by Bergh and
Peetre [2].

2. THE K-FUNCTIONAL FOR THE PAIR (C, wi).

Let f E C(I). For t > 0, we denote by n t partitions of I with n:( [lit] + 1
pieces, that is, I = U7~ 1 Ii, where Ii are disjoint subintervals. We define

where the sup is taken over all partitions n t • Here w(j, " I) denotes the
modulus of continuity of f on the interval 1. Hence Q is a measure of the
variation of f

THEOREM 2.1. Let f E C(I). Then, for t > 0, we have

with absolute constants of equivalency.

Proof From the definition of Q(j, t), it is easy to see that Q(j, t) :(
4 Ilfll co because nt:( 2. Since Q is subadditive (in f), for any g E wi, we
have

Q(j, t):( Q(f - g, t) +Q(g, t)

:(41If-gllco+s~,Pt(tlt Igll)

= 4 IIf - gII co + ttl gil·
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Taking the inf over all g E W: on the right side of the above inequality, we
obtain

Q(j, t) =:( 4K(j, t, C, wl).

To reverse this inequality, we fix t >°and find a balanced partition
n,: I = U7~ 1 Ii, n := [lit] + 1, such that

i, j = 1, 2, ..., n. (2.2)

To show that such a partition exists, we proceed by induction. We can
assume that f is not a constant. There is a balanced partition for n = 1.
Now suppose that for each °< Y < 1 we have a balanced partition of
Iy := [0, y] with n - 1 pieces and let bn _ 1(y) be the common value
in (2.2) for this partition. Then bn(y) is continuous in y and bn_1(0)=0
and bn _ 1(1) > 0. Therefore, we can choose y such that bn - 1(y ) =
OJ(j, 1- y, [y, 1]). If 0=XO<x1< <Xn-2 <xn- 1= Y is the balanced
partition of Iy , then O=XO<Xl < <xn- 1<Xn := 1 provides a balanced
partition of 1= [0, 1] with n pieces.

Now let g be the continuous piecewise linear function which interpolates
f at its breakpoints xj , j = 0, 1, ..., n. If x is any point in Ij = [Xi - 1, xj],
j= 1, 2, ..., n, then If(x)- f(xj-dl =:(OJ(j, IIjl, Ij ) for xEIj. Hence,

If(x)- g(x)1 =:( If(x)- f(xj-dl + If(X~~=~;~jl-dIIX-Xj_ll

=:(2OJ(j, IIjl, Ij ), xEIj,j= 1, ..., n.

The function g E W: and since fEe and the partition n, is balanced, we
have

Ilf - gil 00 (I) =:( sup IIf - gil 00 (I;) =:( 2 sup OJ(j, IIi I, I;)
i

n

=:(2n- 1 I OJ(j, IIi l,!;)=:(2Q(j, t).
i~ 1

Moreover, we have

f Ig'l = ±f Ig'l = ±If(x;) - f(xi+dl =:( ±OJ(j, IIil,!;).
I ;=1 Ii ;=1 ;=1

Hence, we obtain

Ilf- gil 00 (I) + t f Ig'l =:( 3Q(j, t),
I
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which gives

K(f, t, C, Wi),:;; 3Q(f, t). I

The same proof also show that

43

K(f, t, C, BV n C) ~ Q(f, t), t~O, (2.3 )

where this K-functional is defined using the semi-norm Var(f) for the space
BVnC. It is well known (see [10, p. 220J) that the error (J,,(f)oo for
approximation in C by piecewise constants with n pieces is related to
K(f, lin, C, BV n C) by direct and inverse inequalities. From these, we
obtain

0< ex ,:;; 1, n = 1, 2, .... (2.4 )

We remark that similar statements can be made which characterize the
approximation spaces A ~(C) (see Section 5).

In this section, we prove the following theorem.

THEOREM 3.1. Let O<p,q':;;oo and 0<ex<min(r-l+1/p,r). Then,
for f E Lp(I) and 0 < t':;; 1, we have

(3.1 )

with constants of equivalency depending only on IX, p, q.

In the case 1':;; p,:;; 00, this follows from (1.4), (1.6), and Homstedt's
formula (1.8). We prove this theorem for the case 0 < p ,:;; 1 by using some
results from DeVore and Popov [6].

Let Tn be the dyadic knot sequence:

tj := tj := iI2", i E Z.

We let II" := II",r denote the set of all piecewise polynomials of order r
with knots in T" and let ,~(T,,) be the space of those functions SElIn
which are in C- 2 [0, 1]. If N(x) := N(x; 0,1, ..., r) is the B-spline of order
r whose knots are 0, 1, ..., r then each S E y;.( Tn) has the representation

S = L IXj(S) Nj,n'
j

where Nj,n(x):= N(2"(x - t j )). The coefficient functionals IXj carl be

640/67/1·4
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extended to all of L j (we continue to denote this extension by ocj .) Then,
for any f E L ll we have the well-known quasi-interpolant operators Qn:

Qn(f) := L ocj(f) Nj,n"
j

The operator Qn is a projector from L j onto 9';.(Tn). In particular Qn(S) is
defined for all S E IIn"

Now letfELp(I), O<p~ 00. We use the quasi-interpolant operators Qn
to generate smooth dyadic splines to approximate f and then to obtain the
upper estimates for K(f, t~, L p, B~(Lp)). We first define a piecewise polyno
mial Sn(f) E IIn as

where P1j is the best L p approximation toffrom polynomials of degree <r
on [tj _ n tj+r]. Then we define

n=O, 1, ....

We denote by

the error of approximation by dyadic splines. Then, in [6J, DeVore and
Popov have proved the following results.

THEOREM A. For f E Lp(I), 0 < P~ 00, we have

Ilf - Qn(f)IJp ~ Cwr(f, 2 -n)p,

where C is independent off and n.

(3.2)

Proof of Theorem 3.1. We fix 0 < t ~ 1. First we prove that the right
side I(f) of (3.1) does not exceed a multiple of the left side K(f). We have
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Here and later we use the fact that II· lip is a quasinorm (II! + gllp ~
c 1I/II p + II gllp). Taking an inf over all g E B~(Lp) on the right-hand side of
the above inequality, we obtain

I(f) ~ CK(f).

Now we prove the reverse inequality. Since wAf, t)p is monotone, we
have

(3.4 )

We let n be the integer such that 2 -n-l ~ t < 2 -no For g = Qn(f), we have
from Theorem A and (3.4) that

III - gllp ~ CwAf, t)p ~ CI(f).

On the other hand, by Theorem B and A, we have

(3.5)

Here, the equality holds because g E Y:( Tn) and therefore Sk( g) = 0, k ~ n.
Also, the second inequality uses that sk(g)~c(II/-gllp+sk(f)p)~

C(sn(f)p + Sk(f)p)' Now, from the above inequality and (3.5), we obtain

K(f, (", L p, B~(Lp)) ~ II! - gllp + ta
IgIB~(Lp) ~ CI(f). I

4. THE K-FuNCTIONAL FOR (Lp, V",p)

We characterize the K-functional for the pair of spaces (Lp, V",p) and
then apply this to calculate K functionals for Besav spaces, We first
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introduce a new kind of modulus of smoothness for f E L p • Let 0 < a < p,
f3 := 1/0' - l/p, and r := [f3J + 1. We define

(
n )Ua

Q(j, t)a,p:= sup sup h fJ L: wr(j, IIil, IJ; ,
O<h";; t "h i~ 1

(4.1 )

where the second sup is taken over all partitions nh: I = U7~ 1 Ii with
n::::';[l/hJ+1.

THEOREM 4.1. Let 0 < a < p::::,; 00 and f3 := 1/0' - l/p. Then for f E Lp (1)
and t > 0 we have

Proof For f E L p (1), by using Holder's inequality, we have

::::,; C Ilfll p (1).

Hence, for any g EVa, p' we have

Q(j, t)a,p::::'; C(Q(f - g, t)a,p + Q(g, t)a,p)

::::,; C(llf - gllp + tfJlgl Va,.).

(4.2)

We now take an inf over all gE Va,p on the right-hand side of the last
inequality and we obtain

(4.3 )

To prove a converse of this inequality, for t>O we let n:= [l/tJ + 1. As
in the proof of Theorem 2.1, we can find a balanced partition n t such that

i, j= 1, ..., n.

We define

for xEI;,

where PIi are best Lp approximations to f on Ii from polynomials of degree
<r. Whitney's theorem (see, e.g., [10, p. 195J) gives that Ilf -Pdp::::';
Cw,(j, IIil, I;)p' Since the partition nt is balanced, we have
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Ilf-gllp=Ctlllf-Plill;(lJ)'/P ~CCtl wr(f, IIil,IJ;)'/P

(

n \I~

=Cnl/pwr(f, IIil,/Jp=Cnl/p-l/o- i~l wAf, IIil,IJ;)

~CQ(f,t)o-,p. (4.4)

Now the function g is a piecewise polynomial of degree < r with n pieces.
Hence, for any partition Ii of I, 1= Ui I;, we shall have wAg, 11:1, I;)p = 0
if the interval I; contains no breakpoints of g. This means that the number
of these intervals I; which make wr(g, II;I,I;)p#O is ~n. Hence, in the
definition of Igl v ,we can restrict ourselves to partitions with at most n.,p

intervals, i.e., partitions in lit. Therefore, we have

Now, by (4.2) and (4.4), we obtain

Igl Vap ~ C {S~IP Ctl wAf, IIi I, IJ; ) I/o-

(

n ) I/O-}
+ s~; i~1 wAf - g, 11;1,/;);

~C{t-f3Q(f,t)o-,p+t-f3Q(f g,t)o-,p}

~ C{ t- f3Q(f, t)o-,p + t- f3 Ilf - gllp} ~ Ct-f3Q(f, t)o-,p, (4.5)

Then, from (4.4) and (4.5), we obtain

5. K-FuNCTIONALS FOR (Lp , B;/(pct+ 1))

To characterize the K-functional for these pairs, we use various results
which characterize the approximation spaces for free knot spline
approximation in terms of interpolation spaces. Let En denote the class of
all piecewise polynomials of degree < r with at most n pieces. For f E Lp(I),
we denote by (J n(f)p the error of L p approximation off by the elements of
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Ln' Let IX> 0 and 0 < q ~ 00. The approximation space A~(Lp) consists of
all IE Lp(I) such that

O<q<oo

q= 00

is finite. Brudnyi [3] has stated (without proof) that for 0 < (J < p ~ 00,

O<q~oo

(5.1 )

provided a < fJ := 1/(J - l/p and r> fJ. For completeness, we now indicate
how to prove (5.1).

According to general results on approximation spaces (see, for example,
[5]), it is sufficient to prove the following Jackson and Bernstein
inequalities for the pair (Lp, Vc;,p):

(i) (In(f)p~Cn-/3lllva,p'

(ii) lSI Va,p ~ Cn/3 IISll p ,

Now, (i) follows from the proof of Theorem 4.1. Indeed, in that theorem,
we have obtained a free knot spline gELn which satisfies (4.4):

III- gllp ~ CQ(j, t)c;,p, n=[l/t]+1.

Since by the definition of Q, we have Q(j, t)c;,p ~ n -/3 III Va,p' (i) follows.
Regarding (ii), an argument similar to the derivation of (4.5) gives

lSI Va,p = s~; Ctl wr(S, IIil,Ii); ric; ~ CS~IP n/3 Ctl wr(S, IIil,IJ:riP

~ Cn/3 S~IP Ctl IISII; (IJrIP ~ Cn/3IISll p ,

which is (ii).
Recently, Petrushev [9] has shown that these approximation spaces can

also be characterized as interpolation spaces for Besov spaces. Namely, he
shows that for 0 < p < 00, 0 < q ~ 00, and 0 < a < fJ,

A~(Lp) = (Lp, B%/(p/3 + 1»)"I/3,Q

holds. Hence, from (5.1) and (5.2), we have

(5.2)

(5.3 )
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Moreover, DeVore and Popov [5] have shown that if 0 < p < 00,

O<rx</3, then

Therefore, by (5.3), we know that Besov spaces B;/(p,"+l) are the inter
polation spaces with respect to the pair of spaces (Lp, V<J,p),

where O<rx</3 and A:=(rx+1/p)-1. Thus, using Holmstedt's for
mula (1.8) and Theorem 4.1, we obtain the following result for

K(f, t, Lp, B;/(p," + i)'

THEOREM 5.1. Let O<p< 00, and rx>O satisfying l/o--l/p>rx, then,
for f E Lp(I) and t > 0, we have

(5.4 )

where A:=(IX+I/p)-i.

Also, from Theorem 4.1 and (5.1), we can obtain a characterization of
approximation spaces A~(Lp) for free knot approximation by splines of
order r> rx:

THEOREM 5.2. Let 0 < p < 00, 0 < q::::; 00, and IX> O. If 0- > 0 satisfies
1/0- - l/p > rx, then we have

COROLLARY 5.3. Let 0 < p < 00, and rx > O. If 0- > 0 satisfies 1/0- -l/p > ex,
then o-n(f)p=(!)(n-'") if and only ifQ(f, t)<J,p=(!)(t'").
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